Principle Introduction of CO2 r744 Air source water source heat pump for High Temp hot water house heating project or commercial building usage
The compressor sucks low-temperature and low-pressure gaseous carbon dioxide refrigerant from the evaporator, and compresses the carbon dioxide refrigerant into a high-temperature and high-pressure supercritical fluid through work. The high-temperature and high-pressure supercritical fluid enters the gas cooler to exchange heat with water, and is cooled in the gas cooler. The high-pressure fluid releases a lot of heat, and the water absorbs the heat released and the temperature continues to rise. After the high-pressure fluid is throttled and depressurized by the expansion valve, it absorbs heat from the surrounding air and evaporates into low-pressure gas through the action of the fan in the evaporator, and is sucked into the compressor to be compressed, and the cycle is repeated to produce hot water. Features Natural environmental protection refrigerant: ODP is 0, GWP is 1, no pollution to the environment, non-toxic, non-flammable Excellent high-temperature heating performance: the highest water output can reach above 90℃ Excellent low temperature performance: at -20°C ambient temperature, 90°C high temperature hot water can still be produced High efficiency: the heating performance COP can reach 4.5, and when the hot water is produced at low temperature, the COP is still above 2.0 Wide range of application: it can work normally in the ambient temperature range of -20℃~43℃, suitable for our production of domestic or industrial hot water
Performance of CO2 r744 Air source water source heat pump for High Temp hot water house heating project or commercial building usage
Unit type | SJKRS-28 II/C | SJKRS-36II/C | SJKRS-55 II/C | SJKRS-73 I/C | SJKRS-106 IC | SJKRS-I60II /C | |
Specifications | 7.5HP | 10HP | 15HP | 20HP | 30HP | 40HP | |
Power supply | Three-phase five-wire380V/50Hz | ||||||
Heating mode | Direct heat/cycle type | ||||||
Standard working condition | Heating capacity( kw ) | 27.5 | 36.7 | 55.1 | 72.8 | 10.6.5 | 155.1 |
Input Power(kW) | 6.1 | 8.2 | 13.7 | 16.1 | 23.6 | 34.5 | |
COP | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | 4.5 | |
Hot Water flow(m³/h) | 0.59 | 0.79 | 1.18 | 1.56 | 2.29 | 3.33 | |
High temperature condition | Heating capacity kw ) | 23.9 | 28.5 | 51.5 | 59.5 | 89 | 13.1.5 |
Input Power(kW) | 7.5 | 8.9 | 16.1 | 18.6 | 27.8 | 41.1 | |
COP | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | 3.2 | |
Hot Water flow(m³/h) | 0.27 | 0.33 | 0.59 | 0.68 | 1.02 | 1.51 | |
Low temperature condition | Heating capacity( kw ) | 17.3 | 21.4 | 34.8 | 41.5 | 62.2 | 94.5 |
Input Power(kW) | 6.2 | 7.6 | 12.4 | 14.8 | 22.2 | 33.8 | |
COP | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | 2.8 | |
Hot Water flow(m³/h) | 0.32 | 0.4 | 0.65 | 0.78 | 1.16 | 1.77 | |
Component Information | Size of water pipe joint | DN20 | DN25 | DN32 | DN40 | ||
Water heat exchanger | Plate or sleeve heat exchanger | ||||||
Air Heat Exchanger | Aluminum Fin for copper tube | ||||||
compressor type | Semi-closed reciprocating | ||||||
Operation Panel | Color touch screen | ||||||
Maximum outlet temperature(℃) | 90℃ | ||||||
Refrigerants | R744 (CO2 ) | ||||||
Design pressure(MPa) | High side 15, low side 8 | ||||||
Dimensions (length, width and height mm) | 1450x950x1450 | 1600x950x1500 | 1850x1150x1900 | 2050x1150x1950 | 2670x1410x2150 | 2290x2270x1980 | |
Noise (dB) | 56 | 59 | 62 | 67 | 70 | 70 | |
Weight(kg) | 550 | 660 | 780 | 860 | 1180 | 221360 | |
SCOPE of use | Feed water temperature(℃) | 5~ 40 | |||||
Feed water pressure | 0.05~ 0.4 | ||||||
Effluent temperature(℃) | 55~ 90 | ||||||
Maximum flow | 1.2 | 1.5 | 2.4 | 3.2 | 4.9 | 6.5 | |
Ambient temperature(℃) | ’-20~43 |